MCP HubMCP Hub
vrknetha

aisdk-mcp-bridge

by: vrknetha

Bridge package enabling seamless integration between Model Context Protocol (MCP) servers and AI SDK tools. Supports multiple server types, real-time communication, and TypeScript.

15created 05/02/2025
Visit
TypeScript
Integration

📌Overview

Purpose: To provide a bridge package that facilitates efficient communication and tool execution between Model Context Protocol (MCP) servers and the AI SDK.

Overview: AISDK MCP Bridge enables seamless integration between various MCP server types and the AI SDK, offering flexible multi-server configurations and streamlined tool execution, enhancing the capabilities of AI models.

Key Features:

  • Seamless Integration: Provides direct communication between MCP servers and AI SDK, facilitating robust interactions and workflows.

  • Multi-Server Support: Allows configuration for various server types (Node.js, Python, UVX) independently, enhancing versatility and adaptability in deployment.

  • TypeScript Support: Comes with full type definitions, ensuring better development experience and reducing runtime errors.

  • Robust Error Handling: Includes comprehensive mechanisms for managing various errors related to server initialization, communication, and tool execution.

  • Easy-to-Use API: Simple API for executing tools from MCP servers, simplifying the integration process for developers.


AISDK MCP Bridge

A bridge package that enables seamless integration between the Model Context Protocol (MCP) and AI SDK, allowing for efficient communication and tool execution between MCP servers and AI models.

Features

  • Seamless integration between MCP servers and AI SDK
  • Support for various MCP server types (Node.js, Python, UVX)
  • Multi-server support with independent configuration
  • Flexible configuration through mcp.config.json
  • TypeScript support with full type definitions
  • Robust error handling and logging
  • Easy-to-use API for tool execution

Installation

npm install aisdk-mcp-bridge

Quick Start

  1. Create an mcp.config.json file in your project root:
{
  "mcpServers": {
    "twitter-mcp": {
      "command": "npx",
      "args": ["-y", "@enescinar/twitter-mcp"],
      "env": {
        "API_KEY": "your-twitter-api-key",
        "API_SECRET_KEY": "your-twitter-api-secret",
        "ACCESS_TOKEN": "your-twitter-access-token",
        "ACCESS_TOKEN_SECRET": "your-twitter-access-token-secret"
      }
    },
    "firecrawl": {
      "command": "npx",
      "args": ["-y", "mcp-server-firecrawl"],
      "env": {
        "FIRE_CRAWL_API_KEY": "your-firecrawl-api-key",
        "FIRE_CRAWL_API_URL": "https://api.firecrawl.com"
      }
    }
  }
}
  1. Import and use the bridge in your code:
import { generateText } from 'ai';
import { google } from '@ai-sdk/google';
import { getMcpTools, cleanupMcp, initializeMcp } from 'aisdk-mcp-bridge';
import dotenv from 'dotenv';
dotenv.config();

async function main() {
  try {
    // Initialize MCP
    await initializeMcp({ debug: true });

    // Get tools from all servers
    const allTools = await getMcpTools({ debug: true });

    // Or get tools from a specific server
    const twitterTools = await getMcpTools({
      debug: true,
      serverName: 'twitter-mcp',
    });

    // Use tools with AI SDK
    const result = await generateText({
      model: google('gemini-1.5-pro'),
      messages: [
        {
          role: 'system',
          content:
            'You are an AI assistant that uses various tools to help users.',
        },
        {
          role: 'user',
          content: 'Your task description here',
        },
      ],
      tools: twitterTools, // or allTools for all available tools
    });

    console.log('Result:', result.text);
  } finally {
    // Clean up resources
    await cleanupMcp();
  }
}

main().catch(error => {
  console.error('Error:', error);
  process.exit(1);
});

Configuration

The mcp.config.json file supports multiple servers and communication modes. Each server can be configured independently.

Server Configuration Examples

Twitter MCP Server

{
  "mcpServers": {
    "twitter-mcp": {
      "command": "npx",
      "args": ["-y", "@enescinar/twitter-mcp"],
      "env": {
        "API_KEY": "your-twitter-api-key",
        "API_SECRET_KEY": "your-twitter-api-secret",
        "ACCESS_TOKEN": "your-twitter-access-token",
        "ACCESS_TOKEN_SECRET": "your-twitter-access-token-secret"
      }
    }
  }
}

Firecrawl Server

{
  "mcpServers": {
    "firecrawl": {
      "command": "npx",
      "args": ["-y", "mcp-server-firecrawl"],
      "env": {
        "FIRE_CRAWL_API_KEY": "your-firecrawl-api-key",
        "FIRE_CRAWL_API_URL": "https://api.firecrawl.com"
      }
    }
  }
}

SSE Server

{
  "mcpServers": {
    "sse-server": {
      "command": "node",
      "args": ["./server.js"],
      "mode": "sse",
      "sseOptions": {
        "endpoint": "http://localhost:3000/events",
        "headers": {},
        "reconnectTimeout": 5000
      }
    }
  }
}

Server Modes

The bridge supports different communication modes:

  1. stdio Mode (Default)

    • Direct communication through standard input/output
    • Best for simple integrations and local development
    • Low latency and minimal setup required
  2. SSE Mode (Server-Sent Events)

    • Real-time, one-way communication from server to client
    • Ideal for streaming updates and long-running operations
    • Built-in reconnection handling

API Reference

Core Functions

initializeMcp(options?: InitOptions): Promise<void>

Initialize the MCP service with the provided options.

interface InitOptions {
  configPath?: string; // Path to mcp.config.json
  debug?: boolean; // Enable debug logging
}

getMcpTools(options?: ToolOptions): Promise<ToolSet>

Get AI SDK-compatible tools from MCP servers.

interface ToolOptions {
  debug?: boolean; // Enable debug logging
  serverName?: string; // Optional server name to get tools from a specific server
}

executeMcpFunction(serverName: string, functionName: string, args: Record<string, unknown>): Promise<MCPToolResult>

Execute a specific function on an MCP server directly.

// Example
const result = await executeMcpFunction('twitter-mcp', 'postTweet', {
  text: 'Hello from MCP!',
});

Core Types

MCPConfig

Configuration type for MCP servers.

interface MCPConfig {
  mcpServers: {
    [key: string]: ServerConfig;
  };
}

ServerConfig

Configuration for individual MCP servers.

interface ServerConfig {
  command: string;
  args?: string[];
  env?: Record<string, string>;
  mode?: 'stdio' | 'sse';
  sseOptions?: {
    endpoint: string;
    headers?: Record<string, string>;
    reconnectTimeout?: number;
  };
}

MCPToolResult

Result type for MCP tool executions.

interface MCPToolResult {
  success: boolean;
  data?: unknown;
  error?: string;
}

cleanupMcp(): Promise<void>

Clean up MCP resources and close all server connections.

Error Handling

The bridge includes comprehensive error handling for:

  • Server initialization failures
  • Communication errors
  • Tool execution failures
  • Configuration issues
  • Server connection issues

Logging

The bridge provides detailed logging through:

  • mcp-tools.log: Server-side tool execution logs
  • Console output for debugging and errors

Debug Logging

Enable detailed debug logging by setting the DEBUG environment variable:

# Enable all debug logs
DEBUG=* npm start

# Enable MCP debug logs
DEBUG=mcp npm start

# Enable all MCP namespace logs
DEBUG=mcp:* npm start

Debug logs include:

  • Server initialization and shutdown events
  • Tool registration and execution details
  • Communication with MCP servers
  • Schema conversions and validations
  • Error details with stack traces
  • Performance metrics and timing information

Log Types

The logging system supports three types of logs:

  • info: General operational information
  • debug: Detailed debugging information (requires DEBUG env variable)
  • error: Error messages and stack traces (always logged)

Log File

All logs are written to logs/mcp-tools.log with the following format:

[TIMESTAMP] [TYPE] Message
{Optional JSON data}

Development

Prerequisites

  • Node.js 20.x or higher
  • npm 7.x or higher

Setup

  1. Clone the repository
  2. Install dependencies:
npm install

Testing

Run the test suite:

npm test

Run specific tests:

npm run test:twitter
npm run test:firecrawl

Contributing

We welcome contributions! Please see our Contributing Guide for details on:

  • Setting up the development environment
  • Coding standards
  • Pull request process
  • Adding new MCP servers

This project includes a Code of Conduct. By participating, you agree to abide by its terms.

Support

For support:

  1. Check the documentation
  2. Search existing issues
  3. Create a new issue if your problem persists

Changelog

See the change log for a list of changes and migration guides.

Security

For security issues, please email ravi@caw.tech instead of using the public issue tracker.

Authors

See also the list of contributors who participated in this project.

Acknowledgments

  • AI SDK team for their excellent SDK
  • MCP community for the protocol specification
  • All contributors who have helped with the project

License

This project is licensed under the MIT License - see the LICENSE file for details.