skrape-mcp
by: skrapeai
MCP Server for skrape.ai, lets you input any URL and it returns clean markdown for the LLM
📌Overview
Purpose: Provide a simple interface to convert web pages into clean, structured Markdown, optimized for large language model (LLM) consumption.
Overview: The Skrape MCP Server utilizes the skrape.ai API to transform any webpage into well-formatted Markdown. This framework is designed to integrate seamlessly with various LLMs, including Claude Desktop, facilitating efficient web content processing.
Key Features:
-
Get Markdown Tool: Converts any webpage into LLM-ready Markdown, delivering clean and structured content optimized for model processing, with JavaScript rendering capabilities for dynamic content.
-
Noise Reduction: Automatically removes advertisements, navigation menus, and other non-essential elements to enhance content quality for better LLM interpretation.
Skrape MCP Server
Convert any webpage into clean, LLM-ready Markdown using skrape.ai. Perfect for feeding web content into LLMs.
This MCP server provides a simple interface to convert web pages to structured, clean Markdown format using the skrape.ai API. It's designed to work seamlessly with Claude Desktop, other LLMs, and MCP-compatible applications.
Why Use Skrape for LLM Integration?
- Clean, Structured Output: Generates well-formatted Markdown ideal for LLM consumption.
- Noise Reduction: Automatically removes ads, navigation menus, and irrelevant content.
- Consistent Format: Ensures web content is uniformly structured regardless of source.
- JavaScript Support: Handles dynamic content by rendering JavaScript before conversion.
- LLM-Optimized: Perfect for feeding web content into LLMs like Claude, GPT, and others.
Features
Tools
get_markdown
- Convert any webpage to LLM-ready Markdown- Takes any input URL and optional parameters
- Returns clean, structured Markdown optimized for LLM consumption
- Supports JavaScript rendering for dynamic content
- Optional JSON response format for advanced integrations
Installation
Installing via Smithery
To install Skrape MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @skrapeai/skrape-mcp --client claude
Manual Installation
- Get your API key from skrape.ai
- Install dependencies:
npm install
- Build the server:
npm run build
- Add the server config to Claude Desktop:
On MacOS:
nano ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows:
notepad %APPDATA%/Claude/claude_desktop_config.json
Add this configuration (replace paths and API key with your values):
{
"mcpServers": {
"skrape": {
"command": "node",
"args": ["path/to/skrape-mcp/build/index.js"],
"env": {
"SKRAPE_API_KEY": "your-key-here"
}
}
}
}
Using with LLMs
To use the server with Claude or other LLM models:
- Ensure the server is configured properly in your LLM application.
- Ask the LLM to fetch and process a webpage:
Convert this webpage to markdown: https://example.com
Claude will use the MCP tool like this:
<use_mcp_tool>
<server_name>skrape</server_name>
<tool_name>get_markdown</tool_name>
<arguments>
{
"url": "https://example.com",
"options": {
"renderJs": true
}
}
</arguments>
</use_mcp_tool>
The resulting Markdown will be clean, structured, and ready for LLM processing.
Advanced Options
The get_markdown
tool accepts these parameters:
url
(required): Webpage URL to convert.returnJson
(optional): Set totrue
for full JSON response instead of just markdown.options
(optional):renderJs
: Whether to render JavaScript before scraping (default: true).
Example with all options:
<use_mcp_tool>
<server_name>skrape</server_name>
<tool_name>get_markdown</tool_name>
<arguments>
{
"url": "https://example.com",
"returnJson": true,
"options": {
"renderJs": false
}
}
</arguments>
</use_mcp_tool>
Development
For development with auto-rebuild:
npm run watch
Debugging
MCP servers communicate over stdio, which can complicate debugging. Use the MCP Inspector tool:
npm run inspector
The Inspector provides a URL to access debugging tools in your browser.