zig-mcp-server
by: openSVM
zig mcp server
πOverview
Purpose: To provide Zig language tooling and enhance AI capabilities through a Model Context Protocol (MCP) server that facilitates code analysis, optimization, and documentation access.
Overview: The Zig MCP Server offers a comprehensive suite of tools tailored for Zig programming, enabling developers to optimize their code, estimate resource usage, generate code from natural language, and receive best practice recommendations. This server integrates seamless access to documents and popular repositories, facilitating a deeper understanding and application of the Zig language.
Key Features:
-
Code Optimization (
optimize_code
): Analyzes and optimizes Zig code across multiple optimization levels (Debug, ReleaseSafe, ReleaseFast, ReleaseSmall) to enhance performance. -
Compute Units Estimation (
estimate_compute_units
): Evaluates the computational complexity and resource utilization of Zig code, providing insights into memory usage, time complexity, and allocation patterns. -
Code Generation (
generate_code
): Converts natural language descriptions into Zig code, supporting error handling, testing, performance optimizations, and thorough documentation. -
Code Recommendations (
get_recommendations
): Offers tailored advice for improving code quality, including style, design patterns, safety, and performance insights.
Zig MCP Server
A Model Context Protocol (MCP) server providing Zig language tooling, code analysis, and documentation access. Enhances AI capabilities with Zig-specific functionality including code optimization, compute unit estimation, code generation, and best practices recommendations.
Features
Tools
1. Code Optimization (optimize_code
)
Analyzes and optimizes Zig code with support for different optimization levels:
- Debug
- ReleaseSafe
- ReleaseFast
- ReleaseSmall
// Example usage
{
"code": "const std = @import(\"std\");\n...",
"optimizationLevel": "ReleaseFast"
}
2. Compute Units Estimation (estimate_compute_units
)
Estimates computational complexity and resource usage of Zig code:
- Memory usage analysis
- Time complexity estimation
- Allocation patterns detection
// Example usage
{
"code": "const std = @import(\"std\");\n..."
}
3. Code Generation (generate_code
)
Generates Zig code from natural language descriptions with support for:
- Error handling
- Testing
- Performance optimizations
- Documentation
// Example usage
{
"prompt": "Create a function that sorts an array of integers",
"context": "Should handle empty arrays and use comptime when possible"
}
4. Code Recommendations (get_recommendations
)
Provides code improvement recommendations and best practices:
- Style and conventions
- Design patterns
- Safety considerations
- Performance insights
// Example usage
{
"code": "const std = @import(\"std\");\n...",
"prompt": "Improve performance and safety"
}
Resources
-
Language Reference
Official Zig language documentation, syntax and features guide, and best practices. -
Standard Library Documentation
Complete std library reference, function signatures, usage examples, and notes. -
Popular Repositories
Top Zig projects on GitHub, community examples, and real-world implementations.
Installation
- Clone the repository:
git clone [repository-url]
cd zig-mcp-server
- Install dependencies:
npm install
- Build the server:
npm run build
- Configure environment variables:
# Create a GitHub token for better API rate limits
# Required scope: public_repo
GITHUB_TOKEN=your_token_here
- Add to MCP settings:
{
"mcpServers": {
"zig": {
"command": "node",
"args": ["/path/to/zig-mcp-server/build/index.js"],
"env": {
"GITHUB_TOKEN": "your_token_here",
"NODE_OPTIONS": "--experimental-vm-modules"
},
"restart": true
}
}
}
Usage Examples
1. Optimize Code
const result = await useMcpTool("zig", "optimize_code", {
code: `
pub fn fibonacci(n: u64) u64 {
if (n <= 1) return n;
return fibonacci(n - 1) + fibonacci(n - 2);
}
`,
optimizationLevel: "ReleaseFast"
});
2. Estimate Compute Units
const result = await useMcpTool("zig", "estimate_compute_units", {
code: `
pub fn bubbleSort(arr: []i32) void {
var i: usize = 0;
while (i < arr.len) : (i += 1) {
var j: usize = 0;
while (j < arr.len - 1) : (j += 1) {
if (arr[j] > arr[j + 1]) {
const temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
`
});
3. Generate Code
const result = await useMcpTool("zig", "generate_code", {
prompt: "Create a thread-safe counter struct",
context: "Should use atomic operations and handle overflow"
});
4. Get Recommendations
const result = await useMcpTool("zig", "get_recommendations", {
code: `
pub fn main() !void {
var list = std.ArrayList(u8).init(allocator);
var i: u32 = 0;
while (true) {
if (i >= 100) break;
try list.append(@intCast(u8, i));
i += 1;
}
}
`,
prompt: "performance"
});
Development
Project Structure
zig-mcp-server/
βββ src/
β βββ index.ts # Main server implementation
βββ build/ # Compiled JavaScript
βββ package.json # Dependencies and scripts
βββ tsconfig.json # TypeScript configuration
Building
# Development build with watch mode
npm run watch
# Production build
npm run build
Testing
npm test
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
License
MIT License - see the LICENSE file for details.